COMPLEX ANALYTIC PROJECTIVE CONNECTIONS

ALEXANDRU MIHAI

Let M be a complex analytic manifold of dimension $n \ge 2$. A complex analytic projective connection on M is defined with respect to a coordinate covering (U, z^i) of M by its components (U, Γ^i_{jk}) , which are complex analytic functions satisfying the compatibility relations

$$\begin{split} \frac{\partial z^{i}}{\partial z'^{\alpha}} \cdot \frac{\partial^{2} z'^{\alpha}}{\partial z^{j} \partial z^{k}} - \frac{1}{n+1} \delta_{j}^{i} \frac{\partial \log \Delta}{\partial z^{k}} - \frac{1}{n+1} \delta_{k}^{i} \frac{\partial \log \Delta}{\partial z^{j}} \\ &= \Gamma_{jk}^{i} - \Gamma_{\rho \gamma}^{\prime \alpha} \frac{\partial z^{i}}{\partial z'^{\alpha}} \cdot \frac{\partial z'^{\beta}}{\partial z^{j}} \cdot \frac{\partial z'^{\gamma}}{\partial z^{k}}, \end{split}$$

whenever $U \cap U' \neq \emptyset$, where $\Delta = \det(\partial z'^i/\partial z^j)$, [2, p. 99].

The left side determines a class $h(M) \in H^1(M, T^* \otimes T \otimes T^*)$, where T and T^* denote the sheaves of germs of cross sections of the tangent bundle T and the cotangent bundle T^* of M this is the obstruction to the existence of complex analytic projective connections on M.

One has

$$h(M) = a(T) - \frac{1}{n+1}I \cup a(\Lambda^n T) - \frac{1}{n+1}a(\Lambda^n T) \cup I^*,$$

where $a(T) \in H^1(M, T^* \otimes T \otimes T^*)$, $a(\Lambda^n T) \in H^1(M, T^*)$ are the Atiyah classes [1, p. 188], and $I \in H^0(M, T^* \otimes T)$, $I^* \in H^0(M, T \otimes T^*)$ are the identity endomorphisms, and " \cup " denotes the cup product.

The corresponding class in the differential case is always zero. The same is true if M is a Stein manifold.

If M is a compact Kähler manifold, a(T) generates under the operation of the invariant polynomials of $GL_n(\mathbb{C})$, the characteristic cohomology ring of M (with complex coefficients) [1, Theorem 3]. Similarly, h(M) will generate a ring which we will call the projective characteristic ring of M.

Received November 21, 1977.

Theorem. Let M be a compact Kähler manifold of dimension $n \ge 2$. Then the projective characteristic ring of M is generated by the following classes:

$$h_0(M) = 1,$$

$$h_j(M) = \sum_{k=0}^{j} \frac{(-1)^k}{k! (n+1)^k} ch_{j-k}(M) ch_1^k(M) + \frac{(-1)^j}{j! (n+1)^j} ch_1^j(M), \quad 2 \le j \le n,$$

where $ch_i(M)$ are the components of the Chern character of M.

Proof. Let Γ^i_{jk} be the components of the canonical linear connection of the tangent bundle T associated to the hermitian structure of M. The forms $R^i_{jkl} dz^k \wedge d\bar{z}^1$, $R_{kl} dz^k \wedge d\bar{z}^1$, where $R^i_{jkl} = \partial \Gamma^i_{jk}/\partial z^l$, and $R_{kl} = R^i_{ikl}$, represent the Atiyah classes a(T) and $a(\Lambda^n T)$ by the Serre-Dolbeault isomorphism. Also

$$R^{i}_{jkl} dz^{k} \wedge d\bar{z}^{1} - \frac{1}{n+1} \delta^{i}_{j} R_{kl} dz^{k} \wedge d\bar{z}^{1} - \frac{1}{n+1} \delta^{i}_{k} R_{jl} dz^{k} \wedge d\bar{z}^{1}$$

represents the class h(M).

It is well-known that the ring of invariant polynomials of $GL_n(\mathbb{C})$ is generated by (1/j!) tr (A^j) . Consequently, the projective characteristic ring of M is generated by the classes $h_i(M)$ represented by the forms

$$\frac{1}{j!} \left(R^{l}_{l_{2}k_{1}k_{2}} dz^{k_{1}} \wedge d\bar{z}^{k_{2}} - \frac{1}{n+1} \delta^{l_{1}}_{l_{2}} R_{k_{1}k_{2}} dz^{k_{1}} \wedge d\bar{z}^{k_{2}} \right. \\
\left. - \frac{1}{n+1} \delta^{l_{1}}_{k_{1}} R_{l_{2}k_{2}} dz^{k_{1}} \vee d\bar{z}^{k_{2}} \right) \wedge \cdots \wedge \left(R^{l}_{l_{1}k_{2j-1}k_{2j}} dz^{k_{2j-1}} \wedge d\bar{z}^{k_{2j}} \right. \\
\left. - \frac{1}{n+1} \delta^{l}_{l_{1}} R_{k_{2j-1}k_{2j}} dz^{k_{2j-1}} \wedge d\bar{z}^{k_{2j}} \wedge d\bar{z}^{k_{2j}} - \frac{1}{n+1} \delta^{l}_{k_{2j-1}} R_{l_{1}k_{2j}} dz^{k_{2j-1}} \wedge d\bar{z}^{k_{2j}} \right).$$

We recall that in the Kählerian case $R^{i}_{jkl} = R^{i}_{kjl}$. Then the formulas (*) follows by standard calculations, since the form

$$\frac{(\sqrt{-1})^{j}}{j!(2\pi)^{j}}R^{l_{1}}_{l_{2}k_{1}k_{2}}\cdots R^{l_{j}}_{l_{1}k_{2j-1}k_{2j}}dz^{k_{1}}\wedge d\bar{z}^{k_{2}}\wedge\cdots\wedge dz^{k_{2j-1}}\wedge d\bar{z}^{k_{2j}}$$

represents the j-the component of the Chern character of M.

Corollary. If M admits a complex analytic projective connection, then $h_i(M) = 0, 2 \le j \le n$.

For example, there is not such a connection on the product $P^{l}C \times \cdots \times P^{l}C$ of $n \ge 2$ projective lines.

References

- M. F. Atiyah, Complex analytic connections in fibre bundles, Trans. Amer. Math. Soc. 85 (1957) 181-207.
- [2] L. P. Eisenhart, Non-Riemannian geometry, Amer. Math. Soc. Colloq. Publ. 8, New York, 1927.

FACULTY OF MATHEMATICS, BUCHAREST 70109, RUMANIA